이메일

이메일

sales5@xianzhilou.com

부르다

전화번호

86-15980534308

/ 소식 / Omicron 변형에 대해 걱정해야 할까요??

회사 소개

설립연도 2009, 가노허브 기술 (푸젠성) 법인, 모회사인 Fujian Xianzhilou Biological Science and Technology Co.의 비전을 계승했습니다., 주식회사, 천년 건강문화를 계승하고 인류의 웰빙에 기여하는.

Omicron 변형에 대해 걱정해야 할까요??

(Photo credit: Professor John Nicholls, Clinical Professor of Department of Pathology, HKUMed; and Professor Malik Peiris, Tam Wah-Ching Professor in Medical Science and Chair Professor of Virology, School of Public Health, HKUMed; and Electron Microscope Unit, HKU.)

Before analyzing “whether we should worry about the Omicron variant or not”, let us first get acquainted with the SARS-CoV-2 Omicron variant, which only emerged in South Africa on 9 November 2021, swept the world by the end of the next month and made words like breakthrough infections, third doses and boosters into hot searches.

The highly mutated spike protein makes it more difficult for us to defend against viruses.

The electron microscopic image at the beginning of the article is the world’s first “Omicron” photo released by Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKUMed) on December 8, 2021:

The surface of the virus particle has a crown-like shape, which is the spike protein (S protein) used by the virus to invade the cell.

The virus relies on these spike proteins to bind to receptors on the cell surface, triggering the cell’s endocytosis mechanism to open the door to a dangerous foe and then entrap the cells to help them replicate new virus particles so that they can infect more cells.

Therefore, the spike protein is not only the key for the virus to invade cells but also the target for the vaccine to train the immune system to “precisely” identify and capture the virus. The greater the degree of their mutation, the easier it is for vaccine-induced antibodies to miss them.

From the following picture comparing the three-dimensional models of “Delta” and “Omicron” spike proteins published by the prestigious Bambino Gesu hospital in Rome on November 27, 2021, you can understand why Omicron is more transmissible than Delta.

(Source/WHO official website)

The positions marked by color are the mutated regions that are different from the original virus strain. According to analysis, there are at least 32 key mutations in the spike protein of “Omicron”, far exceeding “Delta”, and the highly mutated (red) regions are also concentrated in the positions that interact with human cells.

Such mutations make it easier for “Omicron” to invade human cells to reproduce, to spread among people and to evade existing vaccine-induced immunity, leading to breakthrough infections or reinfections.

“Omicron” easily infects the bronchus but is less likely to penetrate into the lungs.

According to the research results published by HKUMed on its official website on December 15, the Omicron variant replicates around 70 times faster than Delta and the original Covid-19 strain in human bronchus but less well in human lung tissue.

(Figure Source/HKUMed official website)

This may explain why “Omicron” spreads quickly while the initial symptoms of infection (hoarse throat, stuffy nose) can easily be mistaken for a common cold but the severity of the disease is relatively low.

But don’t take it lightly because “Omicron” is less likely to cause severe illness. Who knows what the final outcome awaits us?

What’s more, there are “Delta” and “Influenza” still staring at us at the same time! The best way to avoid them is to try to maintain our immunity at a high level every day.

So we don’t need to worry too much about “Omicron” but we must be careful to take precautions.

What would it look like if a cell was infected with the Omicron variant?

Take a look at the following electron microscopic image provided by HKUMed.

(Photo Credit/HKUMed & Electron Microscope Unit, HKU)

This is the electron micrograph of a Vero (monkey kidney) cell 24 hours after infection with the Omicron variant of SARS-CoV-2. You can see that a lot of viruses are replicating in the cell vesicles, and the virus particles that have been replicating are being released onto the cell surface ready to do their job.

This is just a new virus reproduced by the virus using “one cell”. It is really fast! Fortunately, it’s just an in vitro cell experiment. If it happens in vivo, we don’t know how many cells will suffer, and the infected person at this time is often asymptomatic; when someone feels wrong and wants to prevent it, it’s too late!

After infection, some viruses will be inside the cell while some will be outside the cell. The immune system will deal with the viruses in different ways.

Antibodies induced by vaccination can only capture (neutralize) the virus outside the cell. If the virus can be intercepted as soon as it slips into the cell, things are relatively simple; if the virus infects the cell, the immune cells need to secrete interferon to block viral replication in cells and reduce the amount and speed of viral proliferation and also need “killer T cells” or “natural killer cells” to kill infected cells.

Both viruses caught by antibodies and killed infected cells need macrophages to pick up the bits. Before this, macrophages and dendritic cells must also help to send signals to “helper T cells”, the supreme commanders of the immune system, which then give correct orders to produce cytotoxic T cells and neutralizing antibodies.

Vaccination can induce antibodies, and antiviral drugs can inhibit virus replication in cells and slow down the spread of the virus. 하지만, to really wipe out the virus, it needs every element of the immune system to be fully mobilized and reinforced.

So, after being vaccinated, how to comprehensively increase immune cells, strengthen immune response, improve immune function, promote immune balance, and avoid excessive inflammation?

Since research in the 1990s영지버섯 has been proven to accelerate the maturation of dendritic cells, regulate the differentiation of T cells, stimulate the production of antibodies by B cells, promote the differentiation of monocytes-macrophages, and enhance the activity of natural killer cells, help with the proliferation of various immune cells and the secretion of various cytokines, and have a comprehensive regulatory effect on the immune system. These effects are all summarized in the diagram below.

In the follow-up, we will explain to you more in-depth “why영지버섯 can help us strengthen the immunity we need to fight viruses” through several papers that have been published in international journals. Before that, we hope you have started to eat영지버섯 because daily immunity is very important. Only by maintaining a good immune system every day can we ensure our safety every day.

★ 이 글은 저자의 단독 승인 하에 게재되었습니다., and the ownership belongs to GANOHERB.

★ 위 작품은 복제할 수 없습니다, GanoHerb의 승인 없이 발췌되거나 다른 방법으로 사용되는 경우.

★ If the works have been authorized to be used, they should be used within the scope of authorization and indicate the source: 가노허브.

★ 위 사항을 위반한 경우, GanoHerb는 관련 법적 책임을 추구합니다.

★ 이 기사의 원문은 Wu Tingyao가 중국어로 작성하고 Alfred Liu가 영어로 번역했습니다.. 번역 내용에 차이가 있는 경우 (English) 그리고 원본 (중국인), 원래 중국어가 우선합니다. 독자들이 궁금한 점이 있으면, 원작자에게 연락주세요, 양. 우팅야오.

천년 건강문화를 전하다
모두를 위한 웰빙에 기여

직접 만져보세요

    메시지
    로드 중