## **Support Information**

# Three New Triterpenoids Containing Four-Membered Ring from the Fruiting Body of *Ganoderma sinense*

Cui-Fang Wang<sup>†‡</sup>, Jie-Qing Liu<sup>†</sup>, Yu-Xin Yan<sup>†‡</sup>, Jian-Chao Chen<sup>†‡</sup>, Yang Lu<sup>§</sup>, Yong-Hui Guo<sup>§</sup>, and Ming-Hua Qiu<sup>\*, †</sup>

<sup>†</sup>State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650204, P. R. China

<sup>‡</sup>Graduate school of Chinese Academy of Sciences, Beijing 100049, P. R. China

<sup>§</sup>Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, P.R. China

\*Corresponding author. Phone: +86-871-5223257. Fax: +86-871-5223255. E-mail:

mhchiu@mail.kib.ac.cn

## Contents

| • | Experimental Section                                                                  | Page 2  |
|---|---------------------------------------------------------------------------------------|---------|
| • | Figure S1. <sup>1</sup> H NMR Spectrum of Methyl Ganosinensate A (1)                  | Page 3  |
| • | Figure S2. <sup>13</sup> C NMR Spectrum of Methyl Ganosinensate A (1)                 | Page 4  |
| • | Figure S3. HSQC Spectrum of Methyl Ganosinensate A (1)                                | Page 5  |
| • | Figure S4. HMBC Spectrum of Methyl Ganosinensate A (1)                                | Page 6  |
| • | Figure S5. <sup>1</sup> H- <sup>1</sup> H COSY Spectrum of Methyl Ganosinensate A (1) | Page 7  |
| • | Figure S6. ROESY Spectrum of Methyl Ganosinensate A (1)                               | Page 8  |
| • | Figure S7. <sup>1</sup> H NMR Spectrum of Ganosinensic Acid B (2)                     | Page 9  |
| • | Figure S8. <sup>13</sup> C NMR Spectrum of Ganosinensic Acid B ( <b>2</b> )           | Page 10 |
| • | Figure S9. HSQC Spectrum of Ganosinensic Acid B (2)                                   | Page 11 |
| • | Figure S10. HMBC Spectrum of Ganosinensic Acid B (2)                                  | Page 12 |
| • | Figure S11. <sup>1</sup> H- <sup>1</sup> H COSY Spectrum of Ganosinensic Acid B (2)   | Page 13 |
| • | Figure S12. ROESY Spectrum of Ganosinensic Acid B (2)                                 | Page 14 |
| • | Figure S13. <sup>1</sup> H NMR Spectrum of Ganosinensic Acid A (1a)                   | Page 15 |
| • | Figure S14. <sup>13</sup> C NMR Spectrum of Ganosinensic Acid A ( <b>1a</b> )         | Page 16 |
| • | Figure S15. HSQC Spectrum of Ganosinensic Acid A (1a)                                 | Page 17 |
| • | Figure S16. HMBC Spectrum of Ganosinensic Acid A (1a)                                 | Page 18 |
| • | Figure S17. <sup>1</sup> H- <sup>1</sup> H COSY Spectrum of Ganosinensic Acid A (1a)  | Page 19 |
| • | Figure S18. ROESY Spectrum of Ganosinensic Acid A (1a)                                | Page 20 |
| • | X-ray Crystallographic Analysis of Methyl Ganosinensate A (1).                        | Page 21 |

### **Experimental Section**

*General Instruments*. Melting points were determined on X-4 apparatus and uncorrected. Optical rotations were obtained on JASCO P-1020 digital polarimeter. IR spectra were recorded on a BRUKER TENSOR27 spectrometer. UV spectra were taken on Shimadzu 2401PC spectrophotometer. FAB-MS was determined on a VG Auto Spec-3000 mass spectrometer. Regular 1D-NMR spectra were measured on a Bruker AV-400 MHz instrument with TMS as internal standard. 2D-NMR spectra were measured on DRX-500 MHz spectrometer, and chemical shifts ( $\delta$ ) were reported using Pyridine-d<sub>5</sub> as the solvent.

*Plant Material.* The fruiting body of *G. sinense* was collected from Nanhua country of Yunnan province, China, in November 2008 and identified by Prof. Liu Peigui. (Kunming Institute of Botany, CAS). A voucher sample (No. 08112806) was deposited in the Herbarium of the Department of Taxonomy, Kunming Institute of Botany, Chinese Academy of Sciences.

*Extraction and Isolation.* The powder of fruiting body of G. sinense (50 kg) was extracted with MeOH by refluxing (80 °C, 80 L × 3, 4 h each time) and concentrated in vacuo to give a crude extract (5 kg), which was partitioned between H2O and EtOAc. The EtOAc fraction (1.5 kg) was repeatedly chromatographed on silica gel, C-18 reverse silica gel and sephadex LH-20 (MeOH) to yield methyl ganosinensate A (1, 12 mg), mixed 1a and 2 (31 mg). Further purification with HPLC (Agilent 110 HPLC system, Germany; Beckman C-18, 10 mm × 25 cm, 5  $\mu$ m, U.S.A., CH3CN/H2O 40:60) led to the isolation of ganosinensic acid B (2, 13 mg) and ganosinensic acid A (1a, 8 mg).



Figure S1. <sup>1</sup>H NMR spectrum (500 MHz) of methyl ganosinensate A (1) in C<sub>5</sub>D<sub>5</sub>N



Figure S2.  $^{13}$ C NMR spectrum( ) of methyl ganosinensate A (1) in C<sub>5</sub>D<sub>5</sub>N



Figure S3. HSQC spectrum of methyl ganosinensate A (1)



Figure S4. HMBC spectrum of methyl ganosinensate A (1)



Figure S5. COSY spectrum of methyl ganosinensate A (1)



Figure S6. ROESY spectrum of methyl ganosinensate A (1)



Figure S7. <sup>1</sup>H NMR spectrum (500 MHz) of ganosinensic acid B (2) in C<sub>5</sub>D<sub>5</sub>N

Figure S8. <sup>13</sup>C NMR spectrum of ganosinensic acid B (2) in C<sub>5</sub>D<sub>5</sub>N





Figure S9. HSQC spectrum of ganosinensic acid B (2)



Figure S10. HMBC spectrum of ganosinensic acid B (2)



Figure S11. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of ganosinensic acid B (2)



Figure S12. ROESY spectrum of ganosinensic acid B (2)



Figure S13. <sup>1</sup>H NMR spectrum (500 MHz) of ganosinensic acid A (1a) in  $C_5D_5N$ 



Figure S14. <sup>13</sup>C NMR spectrum of ganosinensic acid A (1a) in C<sub>5</sub>D<sub>5</sub>N



Figure S15. HSQC spectrum of ganosinensic acid A (1a)



Figure S16. HMBC spectrum of ganosinensic acid A (1a)



Figure S17. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of ganosinensic acid A (1a)



Figure S18. ROESY spectrum of ganosinensic acid A (1a)

#### X-ray Crystallographic Analysis of Methyl Ganosinensate A (1).

Crystallographic data for 1:  $C_{28}H_{40}O_6$ , M = 472.60, orthorhombic, space group P212121,  $\alpha$  = 7.6814 (1) Å, b = 12.1284 (1) Å, c = 27.7022 (3) Å, V = 2580.82 (5) Å3, Z = 4, d = 1.216 g/cm3, crystal dimensions 0.10 × 0.10 × 0.20 mm was used for measurements on a MAC DIP-2030K diffractometer with a graphite monochromator ( $\omega$ -2 $\theta$  scans, 2 $\theta$ max = 134.52°), Mo K $\alpha$  radiation. The total number of independent reflections measured was 3692, of which 3439 were observed (|F |2 ≥ 2 $\sigma$ |F |2). Final indices: R1 = 0.0406, wR2 = 0.1111 (w = 1/ $\sigma$ |F |2), S = 1.035. The crystal structure of 1 was solved by direct method SHELXS-97 (Sheldrich, G M. University of Gottingen: Gottingen, Germany, 1997) and the full-matrix least-squares calculations. Crystallographic data for the structure of 1 have been deposited in the Cambridge Crystallographic Data Centre (deposition number: CCDC 755772). Copies of these data can be obtained free of charge via the Internet at www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, U.K.; fax (+44) 1223-336-033; or deposit @ccdc.cam.ac.uk)

| Displacement Farameters (A*2 x 10*5) |          |          |         |       |  |
|--------------------------------------|----------|----------|---------|-------|--|
| x y z U(eq)                          |          |          |         |       |  |
| O(1)                                 | 5700 (4) | -3022(2) | 2022(1) | 90(1) |  |
| O(2)                                 | 11831(2) | 780(2)   | 943(1)  | 87(1) |  |
| O(3)                                 | 7198(2)  | 1605(2)  | 2381(1) | 79(1) |  |
| O(4)                                 | 9813(3)  | 2674(2)  | 465(1)  | 85(1) |  |
| O(5)                                 | 3446(6)  | 6581(2)  | -11(1)  | 92(1) |  |
| O(6)                                 | 3372(3)  | 7831(2)  | 553(1)  | 88(1) |  |
| C(1)                                 | 6647(3)  | -261(2)  | 2078(1) | 64(1) |  |
| C(2)                                 | 5463(3)  | -1102(2) | 1836(1) | 72(1) |  |
| C(3)                                 | 6356(4)  | -2228(2) | 1831(1) | 75(1) |  |
| C(4)                                 | 8116(3)  | -2346(2) | 1576(1) | 66(1) |  |
| C(5)                                 | 8714(3)  | -1161(2) | 1470(1) | 56(1) |  |
| C(6)                                 | 10384(3) | -880(2)  | 1201(1) | 65(1) |  |
| C(7)                                 | 10166(3) | 266(2)   | 972(1)  | 58(1) |  |
|                                      |          |          |         |       |  |

Table 1. Atomic Coordinates (x  $10^4$ ) and Equivalent IsotropicDisplacement Parameters ( $A^2$  x  $10^3$ )

| C(8)   | 8840(2) | 990(2)   | 1230(1) | 52(1) |
|--------|---------|----------|---------|-------|
| C(9)   | 8413(3) | 738(2)   | 1683(1) | 54(1) |
| C(10)  | 8578(3) | -386(2)  | 1905(1) | 60(1) |
| C(11)  | 6752(3) | 1028(2)  | 1948(1) | 58(1) |
| C(12)  | 5454(3) | 1685(2)  | 1642(1) | 54(1) |
| C(13)  | 6477(3) | 2470(2)  | 1307(1) | 51(1) |
| C(14)  | 7644(3) | 1752(2)  | 960(1)  | 50(1) |
| C(15)  | 8347(3) | 2630(2)  | 633(1)  | 62(1) |
| C(16)  | 6923(3) | 3463(2)  | 557(1)  | 64(1) |
| C(17)  | 5464(3) | 3193(2)  | 929(1)  | 55(1) |
| C(18)  | 9363(5) | -3064(3) | 1870(1) | 92(1) |
| C(19)  | 7758(4) | -2945(2) | 1096(1) | 80(1) |
| C(20)  | 9913(4) | -532(3)  | 2313(1) | 89(1) |
| C(21)  | 7654(3) | 3251(2)  | 1603(1) | 65(1) |
| C(22)  | 6523(3) | 1014(2)  | 617(1)  | 55(1) |
| C(23)  | 4486(3) | 4220(2)  | 1104(1) | 61(1) |
| C(24)  | 3813(5) | 4864(2)  | 674(1)  | 91(1) |
| C(25)  | 3112(4) | 6007(2)  | 797(1)  | 88(1) |
| C(26)  | 3314(4) | 6804(2)  | 399(1)  | 74(1) |
| C(27)  | 3508(5) | 8691(2)  | 205(1)  | 96(1) |
| C(28)  | 3031(4) | 3961(3)  | 1459(1) | 84(1) |
| H(2A)  | 11732   | 1386     | 815     | 91    |
| H(3A)  | 6320    | 1696     | 2545    | 99    |
| H(1A)  | 6590    | -352     | 2429    | 77    |
| H(2B)  | 5213    | -872     | 1508    | 86    |
| H(2C)  | 4371    | -1151    | 2010    | 86    |
| H(5A)  | 7805    | -885     | 1253    | 67    |
| H(6A)  | 10607   | -1425    | 952     | 78    |
| H(6B)  | 11361   | -877     | 1423    | 78    |
| H(7A)  | 9750    | 157      | 641     | 69    |
| H(12A) | 4688    | 2107     | 1850    | 65    |
| H(12B) | 4747    | 1186     | 1451    | 65    |
| H(16A) | 6475    | 3414     | 231     | 77    |
| H(16B) | 7363    | 4203     | 610     | 77    |
| H(17A) | 4617    | 2713     | 767     | 66    |
| H(18A) | 9611    | -2710    | 2172    | 94    |

| H(18B) | 10426 | -3164 | 1693 | 94 |
|--------|-------|-------|------|----|
| H(18C) | 8836  | -3769 | 1928 | 94 |
| H(19A) | 7386  | -3686 | 1161 | 90 |
| H(19B) | 8803  | -2960 | 906  | 90 |
| H(19C) | 6863  | -2562 | 922  | 90 |
| H(20A) | 11057 | -602  | 2177 | 94 |
| H(20B) | 9638  | -1184 | 2494 | 94 |
| H(20C) | 9876  | 98    | 2522 | 94 |
| H(21A) | 6946  | 3690  | 1815 | 97 |
| H(21B) | 8288  | 3725  | 1389 | 97 |
| H(21C) | 8458  | 2823  | 1791 | 97 |
| H(22A) | 7277  | 590   | 412  | 82 |
| H(22B) | 5789  | 1474  | 421  | 82 |
| H(22C) | 5815  | 525   | 806  | 82 |
| H(23A) | 5330  | 4690  | 1272 | 73 |
| H(24A) | 2894  | 4442  | 521  | 99 |
| H(24B) | 4750  | 4943  | 441  | 99 |
| H(25A) | 1887  | 5946  | 878  | 95 |
| H(25B) | 3718  | 6284  | 1079 | 95 |
| H(27A) | 3537  | 9390  | 367  | 93 |
| H(27B) | 2522  | 8665  | -7   | 93 |
| H(27C) | 4557  | 8597  | 21   | 93 |
| H(28A) | 2471  | 4634  | 1555 | 96 |
| H(28B) | 3508  | 3602  | 1738 | 96 |
| H(28C) | 2196  | 3485  | 1307 | 96 |

| O(1)-C(3)    | 1.210(3) | C(1)-C(2)    | 1.523(4) |
|--------------|----------|--------------|----------|
| O(2)-C(7)    | 1.425(3) | C(1)-C(10)   | 1.566(3) |
| O(3)-H(3A)   | 0.8200   | C(1)-C(11)   | 1.606(4) |
| O(4)-C(15)   | 1.220(3) | C(1)-H(1A)   | 0.9800   |
| O(5)-C(26)   | 1.170(3) | C(2)-C(3)    | 1.528(4) |
| O(6)-C(26)   | 1.317(3) | C(2)-H(2B)   | 0.9700   |
| O(6)-C(27)   | 1.424(4) | C(2)-H(2C)   | 0.9700   |
| C(3)-C(4)    | 1.532(4) | C(19)-H(19B) | 0.9600   |
| C(4)-C(18)   | 1.528(4) | C(19)-H(19C) | 0.9600   |
| C(4)-C(5)    | 1.537(3) | C(20)-H(20A) | 0.9600   |
| C(4)-C(19)   | 1.539(4) | C(20)-H(20B) | 0.9600   |
| C(5)-C(6)    | 1.522(3) | C(20)-H(20C) | 0.9600   |
| C(5)-C(10)   | 1.532(3) | C(21)-H(21B) | 0.9600   |
| C(5)-H(5A)   | 0.9800   | C(21)-H(21C) | 0.9600   |
| C(6)-C(7)    | 1.537(3) | C(22)-H(22A) | 0.9600   |
| C(6)-H(6A)   | 0.9700   | C(22)-H(22B) | 0.9600   |
| C(6)-H(6B)   | 0.9700   | C(22)-H(22C) | 0.9600   |
| C(7)-C(8)    | 1.523(3) | C(23)-C(24)  | 1.516(3) |
| C(7)-H(7A)   | 0.9800   | C(23)-C(28)  | 1.521(3) |
| C(8)-C(9)    | 1.332(3) | C(23)-H(23A) | 0.9800   |
| C(8)-C(14)   | 1.502(3) | C(24)-C(25)  | 1.526(4) |
| C(9)-C(10)   | 1.501(3) | C(24)-H(24A) | 0.9700   |
| C(9)-C(11)   | 1.513(3) | C(24)-H(24B) | 0.9700   |
| C(10)-C(20)  | 1.537(3) | C(25)-C(26)  | 1.475(4) |
| C(11)-C(12)  | 1.532(3) | C(25)-H(25A) | 0.9700   |
| C(12)-C(13)  | 1.545(3) | C(25)-H(25B) | 0.9700   |
| C(12)-H(12A) | 0.9700   | C(27)-H(27A) | 0.9600   |
| C(12)-H(12B) | 0.9700   | C(27)-H(27B) | 0.9600   |
| C(13)-C(21)  | 1.546(3) | C(27)-H(27C) | 0.9600   |
| C(13)-C(17)  | 1.571(3) | C(28)-H(28A) | 0.9600   |
| C(13)-C(14)  | 1.575(3) | C(28)-H(28B) | 0.9600   |
| C(14)-C(15)  | 1.499(3) | C(28)-H(28C) | 0.9600   |
| C(14)-C(22)  | 1.564(3) |              |          |
|              |          |              |          |

 Table 2.
 Bond lengths [A] and angles [deg] for A.

| C(15)-C(16)      | 1.504(4) | C(7)-O(2)-H(2A)  | 109.5    |
|------------------|----------|------------------|----------|
| C(16)-C(17)      | 1.556(3) | C(11)-O(3)-H(3A) | 109.5    |
| C(16)-H(16A)     | 0.9700   | C(26)-O(6)-C(27) | 118.4(2) |
| C(16)-H(16B)     | 0.9700   | C(2)-C(1)-C(10)  | 111.4(2) |
| C(17)-C(23)      | 1.534(3) | C(2)-C(1)-C(11)  | 125.7(2) |
| C(17)-H(17A)     | 0.9800   | C(10)-C(1)-C(11) | 88.7(2)  |
| C(18)-H(18A)     | 0.9600   | C(2)-C(1)-H(1A)  | 109.6    |
| C(18)-H(18B)     | 0.9600   | C(10)-C(1)-H(1A) | 109.6    |
| C(18)-H(18C)     | 0.9600   | C(11)-C(1)-H(1A) | 109.6    |
| C(19)-H(19A)     | 0.9600   | C(1)-C(2)-C(3)   | 109.6(2) |
| C(1)-C(2)-H(2B)  | 109.8    | C(3)-C(2)-H(2B)  | 109.8    |
| C(1)-C(2)-H(2C)  | 109.8    | C(3)-C(2)-H(2C)  | 109.8    |
| H(2B)-C(2)-H(2C) | 108.2    | O(1)-C(3)-C(2)   | 121.4(2) |
| O(1)-C(3)-C(4)   | 119.6(3) | C(2)-C(3)-C(4)   | 118.9(2) |
| C(18)-C(4)-C(3)  | 111.2(2) | C(18)-C(4)-C(5)  | 116.5(2) |
| C(3)-C(4)-C(5)   | 105.3(2) | C(18)-C(4)-C(19) | 107.6(2) |
| C(3)-C(4)-C(19)  | 106.5(2) | C(5)-C(4)-C(19)  | 109.2(2) |
| C(6)-C(5)-C(10)  | 107.8(2) | C(6)-C(5)-C(4)   | 123.7(2) |
| C(10)-C(5)-C(4)  | 113.8(2) | C(6)-C(5)-H(5A)  | 102.9    |
| C(10)-C(5)-H(5A) | 102.9    | C(4)-C(5)-H(5A)  | 102.9    |
| C(5)-C(6)-C(7)   | 108.3(2) | C(5)-C(6)-H(6A)  | 110.0    |
| C(7)-C(6)-H(6A)  | 110.0    | C(5)-C(6)-H(6B)  | 110.0    |
| C(7)-C(6)-H(6B)  | 110.0    | H(6A)-C(6)-H(6B) | 108.4    |
| O(2)-C(7)-C(8)   | 112.0(3) | O(2)-C(7)-C(6)   | 108.7(2) |
| C(8)-C(7)-C(6)   | 113.6(2) | O(2)-C(7)-H(7A)  | 107.4    |
| C(8)-C(7)-H(7A)  | 107.4    | C(6)-C(7)-H(7A)  | 107.4    |
| C(9)-C(8)-C(14)  | 117.3(2) | C(9)-C(8)-C(7)   | 118.3(2) |
| C(14)-C(8)-C(7)  | 122.0(2) | C(8)-C(9)-C(10)  | 125.0(2) |
| C(8)-C(9)-C(11)  | 127.6(2) | C(10)-C(9)-C(11) | 94.8(2)  |
| C(9)-C(10)-C(5)  | 104.0(3) | C(9)-C(10)-C(20) | 117.5(2) |
| C(5)-C(10)-C(20) | 117.5(3) | C(9)-C(10)-C(1)  | 87.6(2)  |
| C(5)-C(10)-C(1)  | 111.4(2) | C(20)-C(10)-C(1) | 114.7(2) |
| O(3)-C(11)-C(9)  | 108.6(2) | O(3)-C(11)-C(12) | 111.4(2) |
| C(9)-C(11)-C(12) | 113.7(2) | O(3)-C(11)-C(1)  | 107.4(2) |
| C(9)-C(11)-C(1)  | 85.7(2)  | C(12)-C(11)-C(1) | 126.8(2) |
|                  |          |                  |          |

| C(11)-C(12)-C(13)   | 108.8(2) | C(11)-C(12)-H(12A)  | 109.9    |
|---------------------|----------|---------------------|----------|
| C(13)-C(12)-H(12A)  | 109.9    | C(11)-C(12)-H(12B)  | 109.9    |
| C(13)-C(12)-H(12B)  | 109.9    | H(12A)-C(12)-H(12B) | 108.3    |
| C(12)-C(13)-C(21)   | 110.8(2) | C(12)-C(13)-C(17)   | 119.5(2) |
| C(21)-C(13)-C(17)   | 107.6(2) | C(12)-C(13)-C(14)   | 108.4(2) |
| C(21)-C(13)-C(14)   | 109.3(2) | C(17)-C(13)-C(14)   | 100.6(2) |
| C(15)-C(14)-C(8)    | 121.1(2) | C(15)-C(14)-C(22)   | 103.8(2) |
| C(8)-C(14)-C(22)    | 106.7(2) | C(15)-C(14)-C(13)   | 100.4(2) |
| C(8)-C(14)-C(13)    | 112.6(2) | C(22)-C(14)-C(13)   | 112.0(2) |
| O(4)-C(15)-C(14)    | 126.5(2) | O(4)-C(15)-C(16)    | 126.0(2) |
| C(14)-C(15)-C(16)   | 107.5(2) | C(15)-C(16)-C(17)   | 106.9(2) |
| C(15)-C(16)-H(16A)  | 110.4    | C(17)-C(16)-H(16A)  | 110.4    |
| C(15)-C(16)-H(16B)  | 110.4    | C(17)-C(16)-H(16B)  | 110.4    |
| H(16A)-C(16)-H(16B) | 108.6    | C(23)-C(17)-C(16)   | 113.0(2) |
| C(23)-C(17)-C(13)   | 119.0(2) | C(16)-C(17)-C(13)   | 101.6(2) |
| C(23)-C(17)-H(17A)  | 107.6    | C(16)-C(17)-H(17A)  | 107.6    |
| C(13)-C(17)-H(17A)  | 107.6    | C(4)-C(18)-H(18A)   | 109.5    |
| C(4)-C(18)-H(18B)   | 109.5    | H(18A)-C(18)-H(18B) | 109.5    |
| C(4)-C(18)-H(18C)   | 109.5    | H(18A)-C(18)-H(18C) | 109.5    |
| H(18B)-C(18)-H(18C) | 109.5    | C(4)-C(19)-H(19A)   | 109.5    |
| C(4)-C(19)-H(19B)   | 109.5    | H(19A)-C(19)-H(19B) | 109.5    |
| C(4)-C(19)-H(19C)   | 109.5    | H(19A)-C(19)-H(19C) | 109.5    |
| H(19B)-C(19)-H(19C) | 109.5    | C(10)-C(20)-H(20A)  | 109.5    |
| C(10)-C(20)-H(20B)  | 109.5    | H(20A)-C(20)-H(20B) | 109.5    |
| C(10)-C(20)-H(20C)  | 109.5    | H(20A)-C(20)-H(20C) | 109.5    |
| H(20B)-C(20)-H(20C) | 109.5    | C(13)-C(21)-H(21A)  | 109.5    |
| C(13)-C(21)-H(21B)  | 109.5    | H(21A)-C(21)-H(21B) | 109.5    |
| C(13)-C(21)-H(21C)  | 109.5    | H(21A)-C(21)-H(21C) | 109.5    |
| H(21B)-C(21)-H(21C) | 109.5    | C(14)-C(22)-H(22A)  | 109.5    |
| C(14)-C(22)-H(22B)  | 109.5    | H(22A)-C(22)-H(22B) | 109.5    |
| C(14)-C(22)-H(22C)  | 109.5    | H(22A)-C(22)-H(22C) | 109.5    |
| H(22B)-C(22)-H(22C) | 109.5    | C(24)-C(23)-C(28)   | 111.3(2) |
| C(24)-C(23)-C(17)   | 109.6(2) | C(28)-C(23)-C(17)   | 113.4(2) |
| C(24)-C(23)-H(23A)  | 107.4    | C(28)-C(23)-H(23A)  | 107.4    |
| C(17)-C(23)-H(23A)  | 107.4    | C(23)-C(24)-C(25)   | 114.4(2) |
|                     |          |                     |          |

| C(23)-C(24)-H(24A)  | 108.7    | C(25)-C(24)-H(24A)  | 108.7    |
|---------------------|----------|---------------------|----------|
| C(23)-C(24)-H(24B)  | 108.7    | C(25)-C(24)-H(24B)  | 108.7    |
| H(24A)-C(24)-H(24B) | 107.6    | C(26)-C(25)-C(24)   | 113.0(2) |
| C(26)-C(25)-H(25A)  | 109.0    | C(24)-C(25)-H(25A)  | 109.0    |
| C(26)-C(25)-H(25B)  | 109.0    | C(24)-C(25)-H(25B)  | 109.0    |
| H(25A)-C(25)-H(25B) | 107.8    | O(5)-C(26)-O(6)     | 122.0(3) |
| O(5)-C(26)-C(25)    | 125.6(3) | O(6)-C(26)-C(25)    | 112.3(2) |
| O(6)-C(27)-H(27A)   | 109.5    | O(6)-C(27)-H(27B)   | 109.5    |
| H(27A)-C(27)-H(27B) | 109.5    | O(6)-C(27)-H(27C)   | 109.5    |
| H(27A)-C(27)-H(27C) | 109.5    | H(27B)-C(27)-H(27C) | 109.5    |
| C(23)-C(28)-H(28A)  | 109.5    | C(23)-C(28)-H(28B)  | 109.5    |
| H(28A)-C(28)-H(28B) | 109.5    | C(23)-C(28)-H(28C)  | 109.5    |
| H(28A)-C(28)-H(28C) | 109.5    | H(28B)-C(28)-H(28C) | 109.5    |



Figure 1 The crystal packing of methyl ganosinensate A



Figure 2. Single-crystal X-ray structure of methyl ganosinensate A